Home [Linear Algebra] 1.2 Length and Dot Product
Post
Cancel

[Linear Algebra] 1.2 Length and Dot Product

Dot Product

The dot product or inner product of \(\vec{v}= \begin{pmatrix} v_1 \\\ v_2 \end{pmatrix}\) and \(\vec{w}= \begin{pmatrix} w_1 \\\ w_2 \end{pmatrix}\) is

\[\vec{v} \cdot \vec{w} = v_1w_1 + v_2w_2\]

Perpendicular

If \(\vec{v} \cdot \vec{w}=0\), \(\vec{v}\) and \(\vec{w}\) are perpendicular.

Length

The length \(\lvert \lvert \vec{v} \rvert \rvert\) of a vector \(\vec{v}\) is

\[\lvert \lvert \vec{v} \rvert \rvert = \sqrt{\vec{v} \cdot \vec{v}}\]

Unit Vector

A unit vector \(\vec{u}\) is a vector whose length is 1.

\[\lvert \lvert \vec{u} \rvert \rvert = 1\]

To any non-zero vector \(\vec{v}\), divide by its length to obtain a unit vector in the same direction as \(\vec{v}\)

\[\vec{u} = \frac{\vec{v}}{\lvert \lvert \vec{v} \rvert \rvert}\]

Standard Unit Vector

The standard unit vectors along x-axis and y-axis are \(\hat{i}\) and \(\hat{j}\).

Angle between vectors

The angle betweeen \(\vec{v}\) and \(\vec{w}\) is,

\[\cos \theta = \frac{\vec{v}}{\lvert \lvert \vec{v} \rvert \rvert} \frac{\vec{w}}{\lvert \lvert \vec{w} \rvert \rvert}\] \[= \vec{u} \cdot \vec{U}\]

where \(\vec{u}\) and \(\vec{U}\) are the unit vectors of \(\vec{v}\) and \(\vec{w}\).

We can see that the two vectors are perpendicular or \(\theta = 90\) when \(\vec{v} \cdot \vec{w}=0\)

Schwarz Inquality

\[\lvert \vec{v} \cdot \vec{w} \rvert \leq \lvert \lvert \vec{v} \rvert \rvert + \lvert \lvert \vec{w} \rvert \rvert\]

Triangle Inequality

\[\lvert \lvert \vec{v} + \vec{w} \rvert \rvert \leq \lvert \lvert \vec{v} \rvert \rvert + \lvert \lvert \vec{w} \rvert \rvert\]

References

[1] Introduction to Linear Algebra, 5th Edition

This post is licensed under CC BY 4.0 by the author.
Trending Tags